fit1tsmodel_ucminf()
performs a numerical optimization of the
AIC or BIC of the one time scale model.
It finds the optimal values of \(\log_{10}(\varrho_s)\) and returns the estimated
optimal model.
See also ucminf::ucminf()
.
Arguments
- r
A vector of exposure times of length ns, or an array of dimension ns by n.
- y
A vector of event counts of length ns, or an array of dimension ns by n.
- Z
(optional) A regression matrix of covariates of dimension n by p.
- lrho
A starting value for \(\log_{10}(\varrho_s)\). Default is 0.
- Bs
A matrix of B-splines for the time scale
s
.- Ds
The difference matrix of the penalty.
- Wprior
An optional vector of a-priori weights.
- optim_criterion
The criterion to be used for optimization:
"aic"
(default) or"bic"
.- control_algorithm
A list with optional values for the parameters of the iterative processes:
maxiter
The maximum number of iteration for the IWSL algorithm. Default is 20.conv_crit
The convergence criteria, expressed as difference between estimates at iteration i and i+1. Default is1e-5
.verbose
A Boolean. Default isFALSE
. IfTRUE
monitors the iteration process.monitor_ev
A Boolean. Default isFALSE
. IfTRUE
monitors the evaluation of the model over thelog_10(rho_s)
values.
Value
An object of class haz1ts
with the following elements:
optimal_model
A list containing the results of the optimal model.optimal_logrho
The optimal value oflog10(rho_s)
.P_optimal
The optimal penalty matrix P.
References
Nielsen H, Mortensen S (2024). ucminf: General-Purpose Unconstrained Non-Linear Optimization. R package version 1.2.2, https://CRAN.R-project.org/package=ucminf