get_hr()
takes as input the results of a model with covariates
estimated by fit2ts
or fit1ts
and returns the estimated hazard ratios
together with their standard errors.
Value
A list with the following elements:
HR
A vector of hazard ratios (calculated as \(\exp(\hat\beta)\)).SE_HR
A vector of Standard Errors for the hazard ratios calculated via the delta method.beta
A vector of the estimated \(\hat\beta\) coefficients.SE_beta
A vector of the Standard Errors for the beta coefficients.
Examples
# Create some fake data - the bare minimum
id <- 1:20
u <- c(5.43, 3.25, 8.15, 5.53, 7.28, 6.61, 5.91, 4.94, 4.25, 3.86, 4.05, 6.86,
4.94, 4.46, 2.14, 7.56, 5.55, 7.60, 6.46, 4.96)
s <- c(0.44, 4.89, 0.92, 1.81, 2.02, 1.55, 3.16, 6.36, 0.66, 2.02, 1.22, 3.96,
7.07, 2.91, 3.38, 2.36, 1.74, 0.06, 5.76, 3.00)
ev <- c(1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1)
x1 <- c(0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0)
fakedata <- as.data.frame(cbind(id, u, s, ev, x1))
fakedata2ts <- prepare_data(data = fakedata,
u = "u",
s_out = "s",
ev = "ev",
ds = .5,
individual = TRUE,
covs = "x1")
#> `s_in = NULL`. I will use `s_in = 0` for all observations.
#> `s_in = NULL`. I will use `s_in = 0` for all observations.
# Fit a fake model - not optimal smoothing
fakemod <- fit2ts(fakedata2ts,
optim_method = "grid_search",
lrho = list(seq(1, 1.5, .5),
seq(1, 1.5, .5)))
get_hr(fakemod)
#> $beta
#> x1
#> -0.3833005
#>
#> $SE_beta
#> [1] 0.7593286
#>
#> $HR
#> x1
#> 0.681608
#>
#> $SE_HR
#> x1
#> 0.5175645
#>