grid_search_2d() performs a grid search for the minimum
AIC or BIC of the two time scales model.
It finds the optimal values of log_10(rho_u) and log_10(rho_s) and
returns the estimated optimal model.
Usage
grid_search_2d(
lru,
lrs,
R,
Y,
Bu,
Bs,
Z = NULL,
Iu,
Is,
Du,
Ds,
Wprior = NULL,
ridge = 0,
optim_criterion = c("aic", "bic"),
control_algorithm = list(maxiter = 20, conv_crit = 1e-05, verbose = FALSE, monitor_ev =
FALSE),
par_gridsearch = list(plot_aic = FALSE, plot_bic = FALSE, return_aic = TRUE, return_bic
= TRUE, col = grey.colors(n = 10), plot_contour = FALSE, mark_optimal = TRUE,
main_aic = "AIC grid", main_bic = "BIC grid")
)Arguments
- lru
A vector of
log_10(rho_u)values.- lrs
A vector of
log_10(rho_s)values.- R
A matrix (or 3d-array) of exposure times of dimension nu by ns (or nu by ns by n).
- Y
A matrix (or 3d-array) of event counts of dimension nu by ns (or nu by ns by n).
- Bu
A matrix of B-splines for the
utime scale of dimension nu by cu.- Bs
A matrix of B-splines for the
stime scale of dimension ns by cs.- Z
(optional) A regression matrix of covariates values of dimensions n by p.
- Iu
An identity matrix of dimension nbu by nbu.
- Is
An identity matrix of dimension nbs by nbs.
- Du
The difference matrix over
u.- Ds
The difference matrix over
s.- Wprior
An optional matrix of a-priori weights.
- ridge
A ridge penalty parameter: default is 0. This is useful when, in some cases the algorithm shows convergence problems. In this case, set to a small number, for example
1e-4.- optim_criterion
The criterion to be used for optimization:
"aic"(default) or"bic". BIC penalized model complexity more strongly than AIC, so that its usage is recommended when a smoother fit is preferable (see also Camarda, 2012).- control_algorithm
A list with optional values for the parameters of the iterative processes:
maxiterThe maximum number of iteration for the IWSL algorithm. Default is 20.conv_critThe convergence criteria, expressed as difference between estimates at iteration i and i+1. Default is1e-5.verboseA Boolean. Default isFALSE. IfTRUEmonitors the iteration process.monitor_evA Boolean. Default isFALSE. IfTRUEmonitors the evaluation of the model over thelog_10(rho_s)values.
- par_gridsearch
A list of parameters for the grid_search:
plot_aicA Boolean. Default isFALSE. IfTRUE, plot the AIC values over the grid oflog_10(rho_u)andlog_10(rho_s)values.plot_bicA Boolean. Default isFALSE. IfTRUE, plot the BIC values over the grid oflog_10(rho_u)andlog_10(rho_s)values.return_aicA Boolean. Default isTRUE. Return the AIC values.return_bicA Boolean. Default isTRUE. Return the BIC values.colThe color palette to be used for the AIC/BIC plot. Default isgrDevices::gray.colors(n=10).plot_contourA Boolean. Default isTRUE. Adds white contour lines to the AIC/BIC plot.mark_optimalA Boolean. Default isTRUE. If the plot of the AIC or BIC values is returned, marks the optimal combination oflog_10(rho_u)andlog_10(rho_s)in the plot.main_aicThe title of the AIC plot. Default is"AIC grid".main_bicThe title of the BIC plot. Default is"BIC grid".
Value
An object of class h2tsfit with the following elements:
optimal_modelA list containing the results of the optimal model.optimal_logrhoThe optimal couple oflog_10(rho_u)andlog_10(rho_s)values.P_optimalThe optimal penalty matrix P.AIC(ifpar_gridsearch$return_aic == TRUE) The vector of AIC values.BIC(ifpar_gridsearch$return_bic == TRUE) The vector of BIC values.