grid_search_2d()
performs a grid search for the minimum
AIC or BIC of the two time scales model.
It finds the optimal values of log_10(rho_u)
and log_10(rho_s)
and
returns the estimated optimal model.
Usage
grid_search_2d(
lru,
lrs,
R,
Y,
Bu,
Bs,
Z = NULL,
Iu,
Is,
Du,
Ds,
Wprior = NULL,
ridge = 0,
optim_criterion = c("aic", "bic"),
control_algorithm = list(maxiter = 20, conv_crit = 1e-05, verbose = FALSE, monitor_ev =
FALSE),
par_gridsearch = list(plot_aic = FALSE, plot_bic = FALSE, return_aic = TRUE, return_bic
= TRUE, col = grey.colors(n = 10), plot_contour = FALSE, mark_optimal = TRUE,
main_aic = "AIC grid", main_bic = "BIC grid")
)
Arguments
- lru
A vector of
log_10(rho_u)
values.- lrs
A vector of
log_10(rho_s)
values.- R
A matrix (or 3d-array) of exposure times of dimension nu by ns (or nu by ns by n).
- Y
A matrix (or 3d-array) of event counts of dimension nu by ns (or nu by ns by n).
- Bu
A matrix of B-splines for the
u
time scale of dimension nu by cu.- Bs
A matrix of B-splines for the
s
time scale of dimension ns by cs.- Z
(optional) A regression matrix of covariates values of dimensions n by p.
- Iu
An identity matrix of dimension nbu by nbu.
- Is
An identity matrix of dimension nbs by nbs.
- Du
The difference matrix over
u
.- Ds
The difference matrix over
s
.- Wprior
An optional matrix of a-priori weights.
- ridge
A ridge penalty parameter: default is 0. This is useful when, in some cases the algorithm shows convergence problems. In this case, set to a small number, for example
1e-4
.- optim_criterion
The criterion to be used for optimization:
"aic"
(default) or"bic"
. BIC penalized model complexity more strongly than AIC, so that its usage is recommended when a smoother fit is preferable (see also Camarda, 2012).- control_algorithm
A list with optional values for the parameters of the iterative processes:
maxiter
The maximum number of iteration for the IWSL algorithm. Default is 20.conv_crit
The convergence criteria, expressed as difference between estimates at iteration i and i+1. Default is1e-5
.verbose
A Boolean. Default isFALSE
. IfTRUE
monitors the iteration process.monitor_ev
A Boolean. Default isFALSE
. IfTRUE
monitors the evaluation of the model over thelog_10(rho_s)
values.
- par_gridsearch
A list of parameters for the grid_search:
plot_aic
A Boolean. Default isFALSE
. IfTRUE
, plot the AIC values over the grid oflog_10(rho_u)
andlog_10(rho_s)
values.plot_bic
A Boolean. Default isFALSE
. IfTRUE
, plot the BIC values over the grid oflog_10(rho_u)
andlog_10(rho_s)
values.return_aic
A Boolean. Default isTRUE
. Return the AIC values.return_bic
A Boolean. Default isTRUE
. Return the BIC values.col
The color palette to be used for the AIC/BIC plot. Default isgrDevices::gray.colors(n=10)
.plot_contour
A Boolean. Default isTRUE
. Adds white contour lines to the AIC/BIC plot.mark_optimal
A Boolean. Default isTRUE
. If the plot of the AIC or BIC values is returned, marks the optimal combination oflog_10(rho_u)
andlog_10(rho_s)
in the plot.main_aic
The title of the AIC plot. Default is"AIC grid"
.main_bic
The title of the BIC plot. Default is"BIC grid"
.
Value
An object of class h2tsfit
with the following elements:
optimal_model
A list containing the results of the optimal model.optimal_logrho
The optimal couple oflog_10(rho_u)
andlog_10(rho_s)
values.P_optimal
The optimal penalty matrix P.AIC
(ifpar_gridsearch$return_aic == TRUE
) The vector of AIC values.BIC
(ifpar_gridsearch$return_bic == TRUE
) The vector of BIC values.