Summary function for object of class 'haz2tsLMM'
Arguments
- x
an object of class 'haz2tsLMM' returned by the function
fit2ts()
- ...
further arguments
Value
a printed summary of the fitted model, including optimal smoothing paramters, the effective dimension ED and the AIC/BIC. For model with covariates, a regression table is also returned.
Examples
# Create some fake data - the bare minimum
id <- 1:20
u <- c(
5.43, 3.25, 8.15, 5.53, 7.28, 6.61, 5.91, 4.94, 4.25, 3.86, 4.05, 6.86,
4.94, 4.46, 2.14, 7.56, 5.55, 7.60, 6.46, 4.96
)
s <- c(
0.44, 4.89, 0.92, 1.81, 2.02, 1.55, 3.16, 6.36, 0.66, 2.02, 1.22, 3.96,
7.07, 2.91, 3.38, 2.36, 1.74, 0.06, 5.76, 3.00
)
ev <- c(1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1) #'
fakedata <- as.data.frame(cbind(id, u, s, ev))
fakedata2ts <- prepare_data(data = fakedata,
u = "u",
s_out = "s",
ev = "ev",
ds = .5)
#> `s_in = NULL`. I will use `s_in = 0` for all observations.
#> `s_in = NULL`. I will use `s_in = 0` for all observations.
# Fit a fake model - not optimal smoothing
fakemod <- fit2ts(fakedata2ts,
optim_method = "LMMsolver"
)
summary(fakemod)
#> Number of events = 8
#> Model specifications:
#> nu = 13
#> ns = 15
#> cu = 13
#> cs = 13
#>
#> Optimal smoothing:
#> log10(rho_u) = -0.2779945
#> log10(rho_s) = 6.536409
#> rho_u = 0.5272365
#> rho_s = 3438817
#>
#> Model with no covariates
#>
#> Model diagnostics:
#> AIC = 41.81362
#> BIC = 53.51649
#> ED = 4.8875