Skip to contents

get_aic_fit_1d() fits the 1ts model with or without individual level covariates and it returns the AIC of the model. See also fit1tsmodel_ucminf() and fit1ts().

Usage

get_aic_fit_1d(
  lrho,
  r,
  y,
  Z = NULL,
  Bs,
  Ds,
  Wprior = NULL,
  control_algorithm = list(maxiter = 20, conv_crit = 1e-05, verbose = FALSE, monitor_ev =
    FALSE)
)

Arguments

lrho

A starting value for \(\log_{10}(\varrho_s)\). Default is 0.

r

A vector of exposure times of length ns, or an array of dimension ns by n.

y

A vector of event counts of length ns, or an array of dimension ns by n.

Z

(optional) A regression matrix of covariates of dimension n by p.

Bs

A matrix of B-splines for the time scale s.

Ds

The difference matrix of the penalty.

Wprior

An optional vector of a-priori weights.

control_algorithm

A list with optional values for the parameters of the iterative processes:

  • maxiter The maximum number of iteration for the IWSL algorithm. Default is 20.

  • conv_crit The convergence criteria, expressed as difference between estimates at iteration i and i+1. Default is 1e-5.

  • verbose A Boolean. Default is FALSE. If TRUE monitors the iteration process.

  • monitor_ev A Boolean. Default is FALSE. If TRUE monitors the evaluation of the model over the log_10(rho_s) values.

Value

The aic value of the fitted model.